Design scalable, resilient cloud-native architectures across AWS, Azure, and Google Cloud. From containerization to serverless computing, we build cloud solutions that optimize performance, cost, and reliability.
Multi-cloud and hybrid cloud architecture design with vendor-agnostic solutions.
Kubernetes deployment, service mesh implementation, and container security.
Function-as-a-Service design, event-driven serverless applications, and cost optimization.
Microservices, API gateways, and cloud-native application patterns.
Terraform, CloudFormation, and automated infrastructure provisioning.
Zero-trust architecture, identity management, and cloud security frameworks.
Enterprise-grade Kubernetes deployments with service mesh and automated scaling
Cost-effective serverless architectures with event-driven patterns and auto-scaling
Vendor-agnostic cloud architecture with workload distribution across AWS, Azure, and GCP.
Containerized microservices with Kubernetes orchestration and service mesh communication.
Serverless functions with event triggers, message queues, and asynchronous processing.
Automated infrastructure provisioning with Terraform, version control, and CI/CD integration.
cloud_services:
compute:
aws: ec2, lambda, fargate
azure: virtual_machines, functions, container_instances
gcp: compute_engine, cloud_functions, cloud_run
storage:
aws: s3, ebs, efs
azure: blob_storage, managed_disks, files
gcp: cloud_storage, persistent_disk, filestore
databases:
aws: rds, dynamodb, aurora
azure: sql_database, cosmosdb, postgresql
gcp: cloud_sql, firestore, spanner
networking:
aws: vpc, cloudfront, route53
azure: vnet, cdn, dns
gcp: vpc, cdn, cloud_dns
messaging:
aws: sqs, sns, kinesis
azure: service_bus, event_hubs, event_grid
gcp: pub_sub, cloud_tasks
class MultiCloudDeployer:
def __init__(self):
self.providers = {
'aws': AWSProvider(),
'azure': AzureProvider(),
'gcp': GCPProvider()
}
self.deployment_config = self.load_deployment_config()
def deploy_application(self, app_config):
"""Deploy application across multiple cloud providers"""
deployment_results = {}
for region_config in app_config['regions']:
provider = region_config['provider']
region = region_config['region']
try:
# Deploy infrastructure
infrastructure = self.deploy_infrastructure(provider, region, app_config)
# Deploy application
application = self.deploy_app(provider, region, app_config, infrastructure)
# Configure networking
networking = self.configure_networking(provider, region, infrastructure)
deployment_results[f"{provider}-{region}"] = {
'status': 'success',
'infrastructure': infrastructure,
'application': application,
'networking': networking
}
except Exception as e:
deployment_results[f"{provider}-{region}"] = {
'status': 'failed',
'error': str(e)
}
return deployment_results
def configure_cross_cloud_networking(self, deployments):
"""Configure networking between cloud providers"""
# Set up VPN connections or private peering
for provider1, provider2 in itertools.combinations(self.providers.keys(), 2):
if provider1 in deployments and provider2 in deployments:
self.setup_inter_cloud_connection(provider1, provider2)
# Cluster configuration for different environments
clusters:
development:
provider: gcp
region: us-central1
node_pools:
- name: default
machine_type: n1-standard-2
initial_node_count: 2
autoscaling:
min_nodes: 1
max_nodes: 5
staging:
provider: aws
region: us-west-2
node_groups:
- name: staging-nodes
instance_type: m5.large
desired_capacity: 2
min_size: 1
max_size: 5
production:
provider: azure
region: eastus
node_pools:
- name: production
vm_size: Standard_D4s_v3
node_count: 5
autoscaling:
min_nodes: 3
max_nodes: 20
# Istio service mesh configuration
apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:
name: control-plane
spec:
components:
pilot:
k8s:
resources:
requests:
cpu: 500m
memory: 2048Mi
ingressGateways:
- name: istio-ingressgateway
enabled: true
k8s:
service:
type: LoadBalancer
ports:
- port: 80
targetPort: 8080
name: http2
- port: 443
targetPort: 8443
name: https
values:
global:
meshID: mesh1
multiCluster:
clusterName: production-cluster
network: network1
class ContainerSecurityScanner:
def __init__(self):
self.scanners = {
'vulnerability': VulnerabilityScanner(),
'compliance': ComplianceScanner(),
'secrets': SecretsScanner()
}
def scan_image(self, image_name, image_tag):
"""Comprehensive container image security scan"""
scan_results = {}
# Vulnerability scanning
vulnerabilities = self.scanners['vulnerability'].scan(image_name, image_tag)
scan_results['vulnerabilities'] = vulnerabilities
# Compliance checks
compliance_issues = self.scanners['compliance'].check_compliance(image_name, image_tag)
scan_results['compliance'] = compliance_issues
# Secrets detection
secrets = self.scanners['secrets'].detect_secrets(image_name, image_tag)
scan_results['secrets'] = secrets
# Generate security report
security_score = self.calculate_security_score(scan_results)
scan_results['security_score'] = security_score
scan_results['recommendation'] = self.get_security_recommendation(security_score)
return scan_results
def generate_security_policy(self, scan_results):
"""Generate Kubernetes security policies based on scan results"""
policies = {
'network_policy': self.create_network_policy(),
'pod_security_policy': self.create_pod_security_policy(scan_results),
'rbac': self.create_rbac_policy()
}
return policies
# AWS Lambda with event triggers
import json
import boto3
from datetime import datetime
def lambda_handler(event, context):
"""Event-driven Lambda function for order processing"""
# Parse event data
if 'Records' in event:
# S3 or SQS trigger
for record in event['Records']:
if record['eventSource'] == 'aws:s3':
process_s3_event(record)
elif record['eventSource'] == 'aws:sqs':
process_sqs_message(record)
elif 'detail-type' in event:
# CloudWatch Events trigger
if event['detail-type'] == 'Order Placed':
process_order_event(event['detail'])
return {
'statusCode': 200,
'body': json.dumps({
'message': 'Event processed successfully',
'timestamp': datetime.utcnow().isoformat()
})
}
def process_order_event(order_data):
"""Process order placement event"""
# Send confirmation email
send_email_notification(order_data['customer_email'], order_data)
# Update inventory
update_inventory(order_data['items'])
# Trigger fulfillment workflow
trigger_fulfillment(order_data['order_id'])
# Serverless application architecture
serverless_architecture = {
'functions': {
'order-processor': {
'handler': 'orders.process_order',
'events': [
{'sqs': 'order-queue'},
{'s3': {'bucket': 'order-uploads', 'event': 's3:ObjectCreated:*'}}
],
'environment': {
'DYNAMODB_TABLE': 'orders',
'SES_REGION': 'us-east-1'
}
},
'inventory-updater': {
'handler': 'inventory.update_inventory',
'events': [{'stream': 'orders-dynamodb-stream'}]
},
'notification-sender': {
'handler': 'notifications.send_notification',
'events': [{'sns': 'order-notifications'}]
}
},
'resources': {
'order-queue': {'Type': 'AWS::SQS::Queue'},
'order-notifications': {'Type': 'AWS::SNS::Topic'},
'orders-table': {
'Type': 'AWS::DynamoDB::Table',
'Properties': {
'StreamSpecification': {'StreamViewType': 'NEW_AND_OLD_IMAGES'}
}
}
}
}
# OpenAPI specification for serverless API
openapi: 3.0.0
info:
title: Serverless API
version: 1.0.0
paths:
/orders:
post:
summary: Create new order
x-amazon-apigateway-integration:
type: aws_proxy
httpMethod: POST
uri: arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/arn:aws:lambda:us-east-1:123456789012:function:createOrder/invocations
responses:
'200':
description: Order created successfully
'400':
description: Invalid request
get:
summary: List orders
parameters:
- name: limit
in: query
schema:
type: integer
minimum: 1
maximum: 100
x-amazon-apigateway-integration:
type: aws_proxy
httpMethod: POST
uri: arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/arn:aws:lambda:us-east-1:123456789012:function:listOrders/invocations
/orders/{orderId}:
get:
summary: Get order by ID
parameters:
- name: orderId
in: path
required: true
schema:
type: string
x-amazon-apigateway-integration:
type: aws_proxy
httpMethod: POST
uri: arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/arn:aws:lambda:us-east-1:123456789012:function:getOrder/invocations
import json
import boto3
from functools import lru_cache
import os
# Global variables for connection reuse
dynamodb = None
s3_client = None
def lambda_handler(event, context):
"""Optimized Lambda function with connection reuse"""
global dynamodb, s3_client
# Initialize connections outside handler for reuse
if dynamodb is None:
dynamodb = boto3.resource('dynamodb')
if s3_client is None:
s3_client = boto3.client('s3')
# Use cached configuration
config = get_cached_config()
# Process request
result = process_request(event, config)
return {
'statusCode': 200,
'headers': {
'Content-Type': 'application/json',
'Cache-Control': 'max-age=300'
},
'body': json.dumps(result)
}
@lru_cache(maxsize=128)
def get_cached_config():
"""Cache configuration to avoid repeated lookups"""
return {
'table_name': os.environ.get('DYNAMODB_TABLE'),
'bucket_name': os.environ.get('S3_BUCKET'),
'api_endpoint': os.environ.get('API_ENDPOINT')
}
# Provisioned concurrency configuration
provisioned_concurrency = {
'production': {
'allocated_concurrency': 50,
'schedule': [
{
'time': '08:00',
'concurrency': 100 # Scale up during business hours
},
{
'time': '18:00',
'concurrency': 25 # Scale down after hours
}
]
}
}
# Multi-cloud Terraform configuration
terraform {
required_version = ">= 1.0"
required_providers {
aws = {
source = "hashicorp/aws"
version = "~> 5.0"
}
azurerm = {
source = "hashicorp/azurerm"
version = "~> 3.0"
}
google = {
source = "hashicorp/google"
version = "~> 4.0"
}
}
backend "s3" {
bucket = "terraform-state-bucket"
key = "global/terraform.tfstate"
region = "us-east-1"
encrypt = true
dynamodb_table = "terraform-locks"
}
}
# AWS Provider
provider "aws" {
region = var.aws_region
default_tags {
tags = {
Environment = var.environment
Project = var.project_name
ManagedBy = "Terraform"
}
}
}
# Azure Provider
provider "azurerm" {
features {}
subscription_id = var.azure_subscription_id
}
# Google Cloud Provider
provider "google" {
project = var.gcp_project_id
region = var.gcp_region
}
# Kubernetes cluster module
module "kubernetes_cluster" {
source = "./modules/kubernetes"
for_each = var.clusters
cluster_name = each.key
cloud_provider = each.value.provider
region = each.value.region
node_count = each.value.node_count
machine_type = each.value.machine_type
# Network configuration
vpc_cidr = each.value.vpc_cidr
subnet_cidrs = each.value.subnet_cidrs
# Security configuration
enable_network_policy = true
enable_pod_security = true
# Monitoring and logging
enable_monitoring = true
enable_logging = true
tags = merge(
local.common_tags,
{
Cluster = each.key
Type = "kubernetes"
}
)
}
# Load balancer module
module "load_balancer" {
source = "./modules/load-balancer"
for_each = var.load_balancers
name = each.key
cloud_provider = each.value.provider
type = each.value.type # application, network
scheme = each.value.scheme # internet-facing, internal
# Target configuration
targets = each.value.targets
# Health check configuration
health_check = {
enabled = true
healthy_threshold = 2
unhealthy_threshold = 2
timeout = 5
interval = 30
path = "/health"
port = "traffic-port"
protocol = "HTTP"
}
# SSL configuration
ssl_policy = each.value.ssl_policy
certificate_arn = each.value.certificate_arn
tags = merge(
local.common_tags,
{
LoadBalancer = each.key
Type = "load-balancer"
}
)
}
# GitHub Actions workflow for Terraform
name: Infrastructure Deployment
on:
push:
branches: [main]
paths: ['infrastructure/**']
pull_request:
branches: [main]
paths: ['infrastructure/**']
jobs:
terraform:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
- name: Setup Terraform
uses: hashicorp/setup-terraform@v2
with:
terraform_version: 1.6.0
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v2
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: us-east-1
- name: Configure Azure credentials
uses: azure/login@v1
with:
creds: ${{ secrets.AZURE_CREDENTIALS }}
- name: Configure GCP credentials
uses: google-github-actions/auth@v1
with:
credentials_json: ${{ secrets.GCP_SERVICE_ACCOUNT_KEY }}
- name: Terraform Init
run: terraform init
working-directory: infrastructure
- name: Terraform Format Check
run: terraform fmt -check
working-directory: infrastructure
- name: Terraform Validate
run: terraform validate
working-directory: infrastructure
- name: Terraform Plan
run: terraform plan -out=tfplan
working-directory: infrastructure
env:
TF_VAR_environment: ${{ github.ref_name == 'main' && 'production' || 'staging' }}
- name: Terraform Apply
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
run: terraform apply -auto-approve tfplan
working-directory: infrastructure
class ZeroTrustAccessControl:
def __init__(self, identity_provider, policy_engine):
self.identity_provider = identity_provider
self.policy_engine = policy_engine
self.risk_engine = RiskAssessmentEngine()
def evaluate_access_request(self, request):
"""Evaluate access request using zero trust principles"""
# 1. Verify identity
identity_verification = self.verify_identity(request.user)
if not identity_verification.verified:
return AccessDecision(denied=True, reason="Identity verification failed")
# 2. Assess device trust
device_assessment = self.assess_device_trust(request.device)
# 3. Evaluate network location
network_assessment = self.assess_network_location(request.network_info)
# 4. Check behavioral patterns
behavioral_assessment = self.analyze_behavior(request.user, request.access_pattern)
# 5. Risk-based decision
risk_score = self.risk_engine.calculate_risk({
'identity': identity_verification,
'device': device_assessment,
'network': network_assessment,
'behavior': behavioral_assessment
})
# 6. Policy evaluation
policy_decision = self.policy_engine.evaluate_policies(
user=request.user,
resource=request.resource,
action=request.action,
context={
'risk_score': risk_score,
'device_trust': device_assessment.trust_level,
'network_trust': network_assessment.trust_level
}
)
# 7. Make final decision
if policy_decision.allow and risk_score < 70: # Risk threshold
return AccessDecision(
granted=True,
conditions=self.determine_access_conditions(risk_score),
monitoring=True
)
else:
return AccessDecision(
denied=True,
reason=policy_decision.denial_reason or "High risk score",
alternative_auth=risk_score < 90 # Allow MFA challenge
)
# Network segmentation with micro-segmentation
network_security:
vpc_configuration:
public_subnets:
- cidr: "10.0.1.0/24"
purpose: "Internet-facing load balancers"
nacl_rules:
- rule_number: 100
protocol: tcp
rule_action: allow
port_range: {from: 80, to: 80}
- rule_number: 110
protocol: tcp
rule_action: allow
port_range: {from: 443, to: 443}
private_subnets:
- cidr: "10.0.2.0/24"
purpose: "Application servers"
- cidr: "10.0.3.0/24"
purpose: "Database servers"
isolated_subnets:
- cidr: "10.0.4.0/24"
purpose: "Security tools and monitoring"
security_groups:
web_tier:
ingress:
- from_port: 80
to_port: 80
protocol: tcp
source_security_group_id: "${aws_security_group.alb.id}"
- from_port: 443
to_port: 443
protocol: tcp
source_security_group_id: "${aws_security_group.alb.id}"
app_tier:
ingress:
- from_port: 8080
to_port: 8080
protocol: tcp
source_security_group_id: "${aws_security_group.web_tier.id}"
data_tier:
ingress:
- from_port: 3306
to_port: 3306
protocol: tcp
source_security_group_id: "${aws_security_group.app_tier.id}"
class ComplianceMonitor:
def __init__(self, compliance_frameworks):
self.frameworks = compliance_frameworks # SOC2, ISO27001, GDPR, etc.
self.config_rules = self.load_compliance_rules()
self.remediation_engine = RemediationEngine()
def assess_compliance(self, cloud_resources):
"""Assess compliance across all cloud resources"""
compliance_results = {}
for framework in self.frameworks:
framework_results = {
'compliant_resources': 0,
'non_compliant_resources': 0,
'violations': [],
'recommendations': []
}
for resource in cloud_resources:
resource_compliance = self.check_resource_compliance(
resource, framework
)
if resource_compliance.compliant:
framework_results['compliant_resources'] += 1
else:
framework_results['non_compliant_resources'] += 1
framework_results['violations'].extend(resource_compliance.violations)
framework_results['recommendations'].extend(resource_compliance.recommendations)
compliance_results[framework] = framework_results
return compliance_results
def automated_remediation(self, violations):
"""Automatically remediate compliance violations where possible"""
remediation_results = []
for violation in violations:
if violation.auto_remediable:
try:
self.remediation_engine.remediate(violation)
remediation_results.append({
'violation_id': violation.id,
'status': 'remediated',
'action_taken': violation.remediation_action
})
except Exception as e:
remediation_results.append({
'violation_id': violation.id,
'status': 'failed',
'error': str(e)
})
else:
# Create ticket for manual remediation
ticket_id = self.create_remediation_ticket(violation)
remediation_results.append({
'violation_id': violation.id,
'status': 'manual_intervention_required',
'ticket_id': ticket_id
})
return remediation_results
class CloudCostOptimizer:
def __init__(self, cloud_providers):
self.providers = cloud_providers
self.cost_analyzer = CostAnalyzer()
self.rightsizing_engine = RightSizingEngine()
def analyze_cost_optimization_opportunities(self):
"""Identify cost optimization opportunities across cloud resources"""
optimization_opportunities = {}
for provider in self.providers:
provider_opportunities = {
'compute': self.analyze_compute_costs(provider),
'storage': self.analyze_storage_costs(provider),
'networking': self.analyze_networking_costs(provider),
'databases': self.analyze_database_costs(provider),
'reserved_instances': self.analyze_reservation_opportunities(provider)
}
optimization_opportunities[provider.name] = provider_opportunities
return optimization_opportunities
def rightsizing_recommendations(self, compute_resources):
"""Generate right-sizing recommendations for compute resources"""
recommendations = []
for resource in compute_resources:
# Analyze utilization metrics
utilization = self.get_utilization_metrics(resource, days=30)
# CPU utilization analysis
avg_cpu = utilization['cpu']['average']
max_cpu = utilization['cpu']['maximum']
# Memory utilization analysis
avg_memory = utilization['memory']['average']
max_memory = utilization['memory']['maximum']
# Network utilization analysis
avg_network = utilization['network']['average']
# Generate recommendation
if avg_cpu < 20 and max_cpu < 40:
# Under-utilized - recommend smaller instance
recommended_instance = self.get_smaller_instance_type(resource.instance_type)
potential_savings = self.calculate_savings(resource.instance_type, recommended_instance)
recommendations.append({
'resource_id': resource.id,
'current_type': resource.instance_type,
'recommended_type': recommended_instance,
'reason': 'Under-utilized CPU',
'potential_monthly_savings': potential_savings,
'risk_level': 'low' if max_cpu < 30 else 'medium'
})
elif avg_cpu > 80 or max_cpu > 95:
# Over-utilized - recommend larger instance
recommended_instance = self.get_larger_instance_type(resource.instance_type)
recommendations.append({
'resource_id': resource.id,
'current_type': resource.instance_type,
'recommended_type': recommended_instance,
'reason': 'Over-utilized CPU - performance risk',
'potential_monthly_cost_increase': self.calculate_cost_increase(resource.instance_type, recommended_instance),
'risk_level': 'high',
'priority': 'immediate' if max_cpu > 95 else 'high'
})
return recommendations
def spot_instance_opportunities(self, workloads):
"""Identify workloads suitable for spot instances"""
spot_opportunities = []
for workload in workloads:
if self.is_spot_suitable(workload):
current_cost = workload.monthly_cost
spot_cost = current_cost * 0.3 # Typical 70% savings
spot_opportunities.append({
'workload_id': workload.id,
'workload_type': workload.type,
'fault_tolerance': workload.fault_tolerance,
'current_monthly_cost': current_cost,
'estimated_spot_cost': spot_cost,
'potential_savings': current_cost - spot_cost,
'interruption_handling': workload.interruption_strategy
})
return spot_opportunities