Design scalable AI/ML systems with robust MLOps pipelines. From model development to production deployment, we build enterprise-grade AI architectures that deliver reliable, performant machine learning solutions.
End-to-end MLOps platform architecture with automated training, deployment, and monitoring.
Scalable model serving infrastructure with real-time and batch inference capabilities.
ML data pipeline design with feature stores, data versioning, and quality monitoring.
GPU clusters, distributed training, and compute resource optimization for AI workloads.
AI model governance, compliance frameworks, and responsible AI implementation.
Edge deployment strategies, model optimization, and distributed inference systems.
Comprehensive MLOps platform with automated training, deployment, and monitoring pipelines
High-performance real-time inference systems with millisecond latency requirements
Batch and stream processing architecture for ML data pipelines with real-time and historical analytics.
AI microservices architecture with containerized models and API-driven inference services.
Distributed AI architecture with edge computing, model compression, and federated learning.
Platform architecture for serving multiple ML models with resource sharing and load balancing.
training_pipeline:
data_ingestion:
sources:
- data_lakes
- streaming_data
- external_apis
- file_systems
formats:
- parquet
- csv
- json
- avro
data_preprocessing:
validation:
- schema_validation
- data_quality_checks
- outlier_detection
transformation:
- feature_engineering
- data_cleaning
- normalization
- encoding
model_training:
frameworks:
- tensorflow
- pytorch
- scikit_learn
- xgboost
compute:
- gpu_clusters
- distributed_training
- hyperparameter_tuning
model_evaluation:
metrics:
- accuracy
- precision_recall
- auc_roc
- custom_metrics
validation:
- cross_validation
- holdout_testing
- temporal_validation
class ModelRegistry:
def __init__(self, storage_backend, metadata_db):
self.storage = storage_backend
self.metadata = metadata_db
def register_model(self, model_info: ModelInfo):
"""Register new model version with metadata"""
model_version = ModelVersion(
name=model_info.name,
version=model_info.version,
algorithm=model_info.algorithm,
metrics=model_info.metrics,
parameters=model_info.parameters,
artifacts_path=model_info.artifacts_path,
created_by=model_info.created_by,
tags=model_info.tags
)
# Store model artifacts
artifact_path = self.storage.upload_artifacts(
model_info.artifacts,
f"models/{model_info.name}/{model_info.version}"
)
# Store metadata
self.metadata.save_model_version(model_version)
return model_version
def get_model(self, name: str, version: str = None):
"""Retrieve model by name and version"""
if version is None:
version = self.get_latest_version(name)
return self.metadata.get_model_version(name, version)
def promote_model(self, name: str, version: str, stage: str):
"""Promote model to different stage (staging, production)"""
model = self.get_model(name, version)
model.stage = stage
model.promoted_at = datetime.utcnow()
self.metadata.update_model_version(model)
# Trigger deployment pipeline
self.trigger_deployment(model)
# High-performance model serving with caching
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import asyncio
import redis
import pickle
import numpy as np
app = FastAPI()
redis_client = redis.Redis(host='redis', port=6379, decode_responses=True)
class PredictionRequest(BaseModel):
features: list
model_name: str
version: str = "latest"
class PredictionResponse(BaseModel):
prediction: float
confidence: float
model_version: str
inference_time_ms: float
class ModelServer:
def __init__(self):
self.models = {}
self.feature_cache = {}
self.prediction_cache = {}
async def load_model(self, name: str, version: str):
"""Load model from registry with caching"""
cache_key = f"model:{name}:{version}"
if cache_key in self.models:
return self.models[cache_key]
# Load from model registry
model_artifacts = await self.model_registry.get_model(name, version)
model = pickle.load(model_artifacts['model_file'])
self.models[cache_key] = model
return model
async def predict(self, request: PredictionRequest):
"""Perform prediction with caching and monitoring"""
start_time = time.time()
# Feature preprocessing
features = np.array(request.features).reshape(1, -1)
feature_hash = hashlib.md5(str(features).encode()).hexdigest()
# Check prediction cache
cache_key = f"prediction:{request.model_name}:{feature_hash}"
cached_prediction = redis_client.get(cache_key)
if cached_prediction:
return pickle.loads(cached_prediction)
# Load model and predict
model = await self.load_model(request.model_name, request.version)
prediction = model.predict(features)[0]
confidence = model.predict_proba(features).max()
inference_time = (time.time() - start_time) * 1000
response = PredictionResponse(
prediction=prediction,
confidence=confidence,
model_version=request.version,
inference_time_ms=inference_time
)
# Cache result
redis_client.setex(cache_key, 3600, pickle.dumps(response))
# Log metrics
await self.log_prediction_metrics(request, response, inference_time)
return response
batch_inference:
data_sources:
- data_warehouse
- data_lake
- streaming_data
processing_framework:
- apache_spark
- apache_beam
- dask
- ray
compute_resources:
- kubernetes_jobs
- aws_batch
- azure_batch
- google_cloud_dataflow
output_destinations:
- databases
- data_warehouses
- message_queues
- file_systems
scheduling:
- cron_jobs
- event_triggers
- dependency_based
class OnlineFeatureStore:
def __init__(self, storage_backend):
self.storage = storage_backend # Redis, DynamoDB, etc.
async def get_features(self, entity_ids: List[str], feature_names: List[str]):
"""Retrieve features for real-time inference"""
features = {}
for entity_id in entity_ids:
entity_features = {}
for feature_name in feature_names:
key = f"feature:{entity_id}:{feature_name}"
value = await self.storage.get(key)
if value:
entity_features[feature_name] = pickle.loads(value)
else:
# Fallback to offline computation or default value
entity_features[feature_name] = await self.compute_fallback_feature(
entity_id, feature_name
)
features[entity_id] = entity_features
return features
async def write_features(self, features: Dict[str, Dict[str, Any]]):
"""Write features to online store"""
pipeline = self.storage.pipeline()
for entity_id, entity_features in features.items():
for feature_name, feature_value in entity_features.items():
key = f"feature:{entity_id}:{feature_name}"
pipeline.setex(key, 86400, pickle.dumps(feature_value)) # 24h TTL
await pipeline.execute()
# Offline feature store for training data
class OfflineFeatureStore:
def __init__(self, data_warehouse):
self.warehouse = data_warehouse
def get_training_data(self, feature_view: FeatureView, start_date: datetime, end_date: datetime):
"""Generate training dataset with point-in-time correctness"""
query = self.build_training_query(feature_view, start_date, end_date)
return self.warehouse.execute_query(query)
def build_training_query(self, feature_view: FeatureView, start_date: datetime, end_date: datetime):
"""Build SQL query with temporal joins for training data"""
return f"""
SELECT
e.entity_id,
e.event_timestamp,
{self.build_feature_columns(feature_view.features)}
FROM {feature_view.entity_table} e
{self.build_temporal_joins(feature_view.features)}
WHERE e.event_timestamp BETWEEN '{start_date}' AND '{end_date}'
ORDER BY e.entity_id, e.event_timestamp
"""
# Apache Kafka Streams for real-time feature engineering
from kafka import KafkaConsumer, KafkaProducer
import json
class StreamingFeatureProcessor:
def __init__(self, input_topic: str, output_topic: str):
self.consumer = KafkaConsumer(
input_topic,
bootstrap_servers=['kafka:9092'],
auto_offset_reset='latest',
value_deserializer=lambda x: json.loads(x.decode('utf-8'))
)
self.producer = KafkaProducer(
bootstrap_servers=['kafka:9092'],
value_serializer=lambda x: json.dumps(x).encode('utf-8')
)
self.output_topic = output_topic
self.feature_store = OnlineFeatureStore()
async def process_events(self):
"""Process streaming events to compute real-time features"""
for message in self.consumer:
event = message.value
# Compute features from event
features = await self.compute_features(event)
# Write to feature store
await self.feature_store.write_features({
event['entity_id']: features
})
# Publish to output topic for downstream consumers
self.producer.send(self.output_topic, {
'entity_id': event['entity_id'],
'features': features,
'timestamp': event['timestamp']
})
async def compute_features(self, event: dict):
"""Compute features from raw event data"""
features = {}
# Example feature computations
features['user_session_count'] = await self.get_session_count(event['user_id'])
features['time_since_last_purchase'] = await self.time_since_last_purchase(event['user_id'])
features['rolling_avg_transaction'] = await self.rolling_average(event['user_id'], 'transaction_amount', window='7d')
return features
# Kubernetes configuration for GPU-enabled ML training
apiVersion: v1
kind: Namespace
metadata:
name: ml-workloads
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: model-training
namespace: ml-workloads
spec:
replicas: 1
selector:
matchLabels:
app: model-training
template:
metadata:
labels:
app: model-training
spec:
containers:
- name: trainer
image: tensorflow/tensorflow:2.12.0-gpu
resources:
limits:
nvidia.com/gpu: 2
memory: "16Gi"
cpu: "8"
requests:
nvidia.com/gpu: 2
memory: "8Gi"
cpu: "4"
env:
- name: CUDA_VISIBLE_DEVICES
value: "0,1"
volumeMounts:
- name: model-data
mountPath: /data
- name: model-output
mountPath: /output
volumes:
- name: model-data
persistentVolumeClaim:
claimName: ml-data-pvc
- name: model-output
persistentVolumeClaim:
claimName: ml-output-pvc
nodeSelector:
accelerator: nvidia-tesla-v100
# PyTorch distributed training setup
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
class DistributedTrainer:
def __init__(self, model, train_loader, optimizer, criterion):
self.model = model
self.train_loader = train_loader
self.optimizer = optimizer
self.criterion = criterion
def setup_distributed(self, rank, world_size):
"""Initialize distributed training"""
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
# Initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
# Set device
torch.cuda.set_device(rank)
# Wrap model with DDP
self.model = self.model.cuda(rank)
self.model = DDP(self.model, device_ids=[rank])
def train_epoch(self, epoch):
"""Train one epoch with distributed data parallel"""
self.model.train()
self.train_loader.sampler.set_epoch(epoch)
for batch_idx, (data, target) in enumerate(self.train_loader):
data, target = data.cuda(), target.cuda()
self.optimizer.zero_grad()
output = self.model(data)
loss = self.criterion(output, target)
loss.backward()
# Gradient synchronization happens automatically with DDP
self.optimizer.step()
if batch_idx % 100 == 0:
print(f'Rank {dist.get_rank()}, Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item():.6f}')
def run_distributed_training(rank, world_size, model, train_loader, optimizer, criterion, epochs):
trainer = DistributedTrainer(model, train_loader, optimizer, criterion)
trainer.setup_distributed(rank, world_size)
for epoch in range(epochs):
trainer.train_epoch(epoch)
# Cleanup
dist.destroy_process_group()
class ModelDriftDetector:
def __init__(self, reference_data, drift_threshold=0.05):
self.reference_data = reference_data
self.drift_threshold = drift_threshold
self.baseline_stats = self.compute_baseline_stats()
def compute_baseline_stats(self):
"""Compute baseline statistics from reference data"""
return {
'mean': np.mean(self.reference_data, axis=0),
'std': np.std(self.reference_data, axis=0),
'quantiles': np.quantile(self.reference_data, [0.25, 0.5, 0.75], axis=0)
}
def detect_drift(self, new_data):
"""Detect data drift using statistical tests"""
drift_results = {}
# Kolmogorov-Smirnov test for each feature
for i in range(self.reference_data.shape[1]):
ks_stat, p_value = stats.ks_2samp(
self.reference_data[:, i],
new_data[:, i]
)
drift_results[f'feature_{i}'] = {
'ks_statistic': ks_stat,
'p_value': p_value,
'drift_detected': p_value < self.drift_threshold
}
# Population Stability Index (PSI)
psi_score = self.calculate_psi(self.reference_data, new_data)
drift_results['psi_score'] = psi_score
drift_results['psi_drift'] = psi_score > 0.2 # Common threshold
return drift_results
def calculate_psi(self, reference, new_data, bins=10):
"""Calculate Population Stability Index"""
# Create bins based on reference data
bin_edges = np.quantile(reference, np.linspace(0, 1, bins + 1))
# Calculate expected and actual frequencies
expected_freq = np.histogram(reference, bins=bin_edges)[0] / len(reference)
actual_freq = np.histogram(new_data, bins=bin_edges)[0] / len(new_data)
# Avoid division by zero
expected_freq = np.where(expected_freq == 0, 0.0001, expected_freq)
actual_freq = np.where(actual_freq == 0, 0.0001, actual_freq)
# Calculate PSI
psi = np.sum((actual_freq - expected_freq) * np.log(actual_freq / expected_freq))
return psi
class ModelPerformanceMonitor:
def __init__(self, model_name, metrics_backend):
self.model_name = model_name
self.metrics = metrics_backend
self.alert_thresholds = {
'accuracy': 0.85,
'precision': 0.80,
'recall': 0.80,
'latency_p95': 100, # milliseconds
'error_rate': 0.05
}
def log_prediction(self, prediction_request, prediction_response, ground_truth=None):
"""Log prediction with performance metrics"""
metrics = {
'timestamp': datetime.utcnow(),
'model_name': self.model_name,
'model_version': prediction_response.model_version,
'features': prediction_request.features,
'prediction': prediction_response.prediction,
'confidence': prediction_response.confidence,
'inference_time_ms': prediction_response.inference_time_ms
}
if ground_truth is not None:
metrics['ground_truth'] = ground_truth
metrics['is_correct'] = (prediction_response.prediction == ground_truth)
self.metrics.log_prediction(metrics)
def compute_batch_metrics(self, predictions, ground_truth):
"""Compute batch performance metrics"""
accuracy = accuracy_score(ground_truth, predictions)
precision = precision_score(ground_truth, predictions, average='weighted')
recall = recall_score(ground_truth, predictions, average='weighted')
f1 = f1_score(ground_truth, predictions, average='weighted')
batch_metrics = {
'timestamp': datetime.utcnow(),
'model_name': self.model_name,
'sample_count': len(predictions),
'accuracy': accuracy,
'precision': precision,
'recall': recall,
'f1_score': f1
}
self.metrics.log_batch_metrics(batch_metrics)
# Check for alerts
self.check_performance_alerts(batch_metrics)
return batch_metrics
def check_performance_alerts(self, metrics):
"""Check if metrics breach alert thresholds"""
alerts = []
for metric_name, threshold in self.alert_thresholds.items():
if metric_name in metrics:
value = metrics[metric_name]
# Different alert conditions for different metrics
if metric_name in ['accuracy', 'precision', 'recall'] and value < threshold:
alerts.append(f"{metric_name.upper()} below threshold: {value:.3f} < {threshold}")
elif metric_name in ['latency_p95', 'error_rate'] and value > threshold:
alerts.append(f"{metric_name.upper()} above threshold: {value:.3f} > {threshold}")
if alerts:
self.send_alerts(alerts)
def send_alerts(self, alerts):
"""Send performance alerts to monitoring system"""
for alert in alerts:
self.metrics.send_alert({
'severity': 'WARNING',
'model_name': self.model_name,
'message': alert,
'timestamp': datetime.utcnow()
})
class ModelCompressor:
def __init__(self, model):
self.model = model
def quantize_model(self, quantization_type='int8'):
"""Quantize model for edge deployment"""
if quantization_type == 'int8':
# Post-training quantization
quantized_model = tf.lite.TFLiteConverter.from_keras_model(self.model)
quantized_model.optimizations = [tf.lite.Optimize.DEFAULT]
quantized_model.target_spec.supported_types = [tf.int8]
return quantized_model.convert()
elif quantization_type == 'dynamic':
# Dynamic range quantization
converter = tf.lite.TFLiteConverter.from_keras_model(self.model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
return converter.convert()
def prune_model(self, sparsity=0.5):
"""Apply magnitude-based pruning"""
import tensorflow_model_optimization as tfmot
pruning_params = {
'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(
initial_sparsity=0.0,
final_sparsity=sparsity,
begin_step=0,
end_step=1000
)
}
pruned_model = tfmot.sparsity.keras.prune_low_magnitude(
self.model, **pruning_params
)
return pruned_model
def knowledge_distillation(self, teacher_model, student_model, temperature=3.0):
"""Compress model using knowledge distillation"""
class DistillationLoss(tf.keras.losses.Loss):
def __init__(self, temperature):
super().__init__()
self.temperature = temperature
def call(self, y_true, y_pred):
teacher_pred = teacher_model(y_true['input'], training=False)
student_pred = y_pred
# Soft targets from teacher
soft_targets = tf.nn.softmax(teacher_pred / self.temperature)
soft_pred = tf.nn.softmax(student_pred / self.temperature)
# Distillation loss
distillation_loss = tf.keras.losses.categorical_crossentropy(
soft_targets, soft_pred
)
# Hard targets loss
hard_loss = tf.keras.losses.categorical_crossentropy(
y_true['labels'], student_pred
)
return 0.7 * distillation_loss + 0.3 * hard_loss
return DistillationLoss(temperature)
class FederatedLearningCoordinator:
def __init__(self, global_model, client_fraction=0.1):
self.global_model = global_model
self.client_fraction = client_fraction
self.clients = {}
self.round_number = 0
def register_client(self, client_id, client):
"""Register federated learning client"""
self.clients[client_id] = client
def federated_averaging(self, client_updates, client_weights):
"""Perform federated averaging of model updates"""
# Weight updates by number of samples
total_samples = sum(client_weights.values())
# Initialize averaged weights
averaged_weights = None
for client_id, weights in client_updates.items():
client_sample_weight = client_weights[client_id] / total_samples
if averaged_weights is None:
averaged_weights = [w * client_sample_weight for w in weights]
else:
for i, w in enumerate(weights):
averaged_weights[i] += w * client_sample_weight
return averaged_weights
def run_federated_round(self):
"""Execute one round of federated learning"""
# Select random subset of clients
selected_clients = random.sample(
list(self.clients.keys()),
int(len(self.clients) * self.client_fraction)
)
# Send global model to selected clients
global_weights = self.global_model.get_weights()
client_updates = {}
client_weights = {}
for client_id in selected_clients:
client = self.clients[client_id]
# Client trains on local data
local_weights, num_samples = client.train(global_weights)
client_updates[client_id] = local_weights
client_weights[client_id] = num_samples
# Aggregate updates using federated averaging
new_global_weights = self.federated_averaging(client_updates, client_weights)
# Update global model
self.global_model.set_weights(new_global_weights)
self.round_number += 1
return {
'round': self.round_number,
'selected_clients': selected_clients,
'total_samples': sum(client_weights.values())
}
class FederatedClient:
def __init__(self, client_id, local_data, model_architecture):
self.client_id = client_id
self.local_data = local_data
self.model = model_architecture()
def train(self, global_weights, epochs=5):
"""Train local model on client data"""
# Set global weights
self.model.set_weights(global_weights)
# Train on local data
self.model.fit(
self.local_data['x_train'],
self.local_data['y_train'],
epochs=epochs,
batch_size=32,
verbose=0
)
return self.model.get_weights(), len(self.local_data['x_train'])